Stationary States of Reaction-Diffusion and Schrödinger Systems with Inhomogeneous or Controlled Diffusion

نویسندگان

  • Alexandre Montaru
  • Boyan Sirakov
چکیده

We obtain classification, solvability and nonexistence theorems for positive stationary states of reaction-diffusion and Schrödinger systems involving a balance between repulsive and attractive terms. This class of systems contains PDE arising in biological models of Lotka-Volterra type, in physical models of Bose-Einstein condensates and in models of chemical reactions. We show, with different proofs, that the results obtained in [ARMA, 213 (2014), 129-169] for models with homogeneous diffusion are valid for general heterogeneous media, and even for controlled inhomogeneous diffusions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On long-time dynamics for competition-diffusion systems with inhomogeneous Dirichlet boundary conditions

We consider a two-component competition-diffusion system with equal diffusion coefficients and inhomogeneous Dirichlet boundary conditions. When the interspecific competition parameter tends to infinity, the system solution converges to that of a freeboundary problem. If all stationary solutions of this limit problem are non-degenerate and if a certain linear combination of the boundary data do...

متن کامل

On the Number of Stationary Patterns in Reaction-diffusion Systems

We study systems of two nonlinear reaction-diffusion partial differential equations undergoing diffusion driven instability. Such systems may have spatially inhomogeneous stationary solutions called Turing patterns. These solutions are typically non-unique and it is not clear how many of them exists. Since there are no analytical results available, we look for the number of distinct stationary ...

متن کامل

Numerical algorithms for a variational problem of the spatial segregation of reaction-diffusion systems

In this paper, we study a numerical approximation for a class of stationary states for reaction-diffusion system with m densities having disjoint support, which are governed by a minimization problem. We use quantitative properties of both solutions and free boundaries to derive our scheme. Furthermore, the proof of convergence of the numerical method is given in some particular cases. We also ...

متن کامل

Almost sure exponential stability of stochastic reaction diffusion systems with Markovian jump

The stochastic reaction diffusion systems may suffer sudden shocks‎, ‎in order to explain this phenomena‎, ‎we use Markovian jumps to model stochastic reaction diffusion systems‎. ‎In this paper‎, ‎we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps‎. ‎Under some reasonable conditions‎, ‎we show that the trivial solution of stocha...

متن کامل

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2016